DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea
نویسندگان
چکیده
BACKGROUND Extracellular dissolved DNA has been demonstrated to be present in many terrestrial and aquatic environments, actively secreted, or released by decaying cells. Free DNA has the genetic potential to be acquired by living competent cells by horizontal gene transfer mediated by natural transformation. The aim of this work is to study the persistence of extracellular DNA and its biological transforming activity in extreme environments like the deep hypersaline anoxic lakes of the Mediterranean Sea. The brine lakes are separated from the upper seawater by a steep chemocline inhabited by stratified prokaryotic networks, where cells sinking through the depth profile encounter increasing salinity values and osmotic stress. RESULTS Seven strains belonging to different taxonomic groups isolated from the seawater-brine interface of four hypersaline lakes were grown at medium salinity and then incubated in the brines. The osmotic stress induced the death of all the inoculated cells in variable time periods, between 2 hours and 144 days, depending on the type of brine rather than the taxonomic group of the strains, i.e. Bacillaceae or gamma-proteobacteria. The Discovery lake confirmed to be the most aggressive environment toward living cells. In all the brines and in deep seawater dissolved plasmid DNA was substantially preserved for a period of 32 days in axenic conditions. L'Atalante and Bannock brines induced a decrease of the supercoiled form up to 70 and 40% respectively; in the other brines only minor changes in plasmid conformation were observed. Plasmid DNA after incubation in the brines maintained the capacity to transform naturally competent cells of Acinetobacter baylii strain BD413. CONCLUSION Free dissolved DNA is likely to be released by the lysis of cells induced by osmotic stress in the deep hypersaline anoxic lakes. Naked DNA was demonstrated to be preserved and biologically active in these extreme environments, and hence could constitute a genetic reservoir of traits acquirable by horizontal gene transfer.
منابع مشابه
Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments
BACKGROUND The deep-sea, hypersaline anoxic brine lakes in the Mediterranean are among the most extreme environments on earth, and in one of them, the MgCl2-rich Discovery basin, the presence of active microbes is equivocal. However, thriving microbial communities have been detected especially in the chemocline between deep seawater and three NaCl-rich brine lakes, l'Atalante, Bannock and Urani...
متن کاملEnvironmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea
High salt concentrations, absence of light, anoxia, and high hydrostatic pressure make deep hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea one of the most polyextreme habitats on Earth. Taking advantage of the unique chemical characteristics of these basins, we tested the effect of environmental selection and geographic distance on the structure of protistan communities. Ter...
متن کاملThe exploration of Eastern Mediterranean deep hypersaline anoxic basins with MODUS: a significant example of technology spin-off from the GEOSTAR program
A significant example of technological spin-off from the GEOSTAR project is the special-purpose instrumented module, based on the deep-sea ROV MODUS, developed in the framework of the EU-sponsored project BIODEEP. The goal to be achieved has been defined as the exploration of the deep hypersaline anoxic basins of the Eastern Mediterranean Sea through real-time video images, measurements and acc...
متن کاملHeterotrophic Protists in Hypersaline Microbial Mats and Deep Hypersaline Basin Water Columns
Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline m...
متن کاملPhylogeography, Salinity Adaptations and Metabolic Potential of the Candidate Division KB1 Bacteria Based on a Partial Single Cell Genome
Deep-sea hypersaline anoxic basins and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that have been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Saline Systems
دوره 4 شماره
صفحات -
تاریخ انتشار 2008